4725 Further Pure Mathematics 1

\begin{tabular}{|c|c|c|c|c|}
\hline 1. \& \(984390625-25502500=958888125\) \& \[
\begin{array}{|l|}
\hline \text { B1 } \\
\text { M1 } \\
\text { A1 }
\end{array}
\] \& 3
3 \& State correct value of \(S_{250}\) or \(S_{100}\) Subtract \(S_{250}-S_{100}\) (or \(S_{101}\) or \(S_{99}\)) Obtain correct exact answer \\
\hline 2. \& \[
\begin{aligned}
\& 3 a+5 b=1, a+2 b=1 \\
\& a=-3, b=2
\end{aligned}
\] \& M1 M1 A1 A1 \& 4 \& \begin{tabular}{l}
Obtain a pair of simultaneous equations \\
Attempt to solve Obtain correct answers.
\end{tabular} \\
\hline 3. \& \begin{tabular}{l}
(i) \(11-29 \mathrm{i}\) \\
(ii) \(1+41 \mathrm{i}\)
\end{tabular} \& \[
\begin{aligned}
\& \text { B1 B1 } \\
\& \text { B1 B1 }
\end{aligned}
\] \& 2
2
4 \& \begin{tabular}{l}
Correct real and imaginary parts \\
Correct real and imaginary parts
\end{tabular} \\
\hline 4. \& Either \(p+q=-1, p q=-8\)
\[
\begin{array}{cc}
\& \frac{p+q}{p q} \\
\& -\frac{7}{8} \\
\text { Or } \& \frac{1}{p}+\frac{1}{q}=8 \\
\& p+q=1 \\
\& -\frac{7}{8} \\
\text { Or } \& \frac{-1 \pm \sqrt{33}}{2} \\
\& -\frac{7}{8}
\end{array}
\] \& \begin{tabular}{l}
B1 \\
B1 \\
M1 \\
A1 \\
B1 \\
B1 \\
M1 \\
A1 \\
M1 \\
A1 \\
M1 \\
A1
\end{tabular} \& 4 \& \begin{tabular}{l}
Both values stated or used \\
Correct expression seen \\
Use their values in their expression Obtain correct answer \\
Substitute \(x=\frac{1}{u}\) and use new quadratic \\
Correct value stated \\
Use their values in given expression Obtain correct answer \\
Find roots of given quadratic equation \\
Correct values seen \\
Use their values in given expression \\
Obtain correct answer
\end{tabular} \\
\hline 5. \& \begin{tabular}{l}
(i) \(u^{3}=\{(-)(5 u+7)\}^{2}\)
\[
u^{3}-25 u^{2}-70 u-49=0
\] \\
(ii)
\[
-70
\]
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
A1 ft
\end{tabular} \& 3

2

5 \& | Use given substitution and rearrange Obtain correct expression, or equivalent |
| :--- |
| Obtain correct final answer |
| Use coefficient of u of their cubic or identity connecting the symmetric functions and substitute values from given equation Obtain correct answer |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 6. \& \begin{tabular}{l}
(i) \(3 \sqrt{2},-\frac{\pi}{4}\) or \(-45^{\circ}\) AEF \\
(ii)(a) \\
(ii)(b) \\
(iii)
\end{tabular} \& \begin{tabular}{l}
B1 B1 \\
B1B1 \\
B1 ft \\
B1 \\
B1 \\
B1 \\
B1ft \\
B1ft \\
B1ft
\end{tabular} \& 2
3
3
3

3

11 \& | State correct answers |
| :--- |
| Circle, centre (3, -3), through $O \mathrm{ft}$ for $(\pm 3, \pm 3)$ only Straight line with + ve slope, through ($3,-3$) or their centre Half line only starting at centre |
| Area above horizontal through a, below (ii) (b) Outside circle |

\hline 7. \& | (i) |
| :--- |
| (ii) |
| (iii) $\begin{aligned} & (n+1)^{4}-1-n(n+1)(2 n+1)-2 n(n+1)-n \\ & 4 \sum_{r=1}^{n} r^{3}=n^{2}(n+1)^{2} \end{aligned}$ | \& | M1 |
| :--- |
| A1 |
| M1 |
| A1 |
| B1 B1 |
| M1* |
| *DM1 |
| A1 |
| A1 | \& 6

10 \& | Show that terms cancel in pairs Obtain given answer correctly |
| :--- |
| Attempt to expand and simplify Obtain given answer correctly $\text { Correct } \sum r \text { stated } \quad \sum 1=n$ |
| Consider sum of 4 separate terms on RHS |
| Required sum is LHS - 3 terms |
| Correct unsimplified expression |
| Obtain given answer correctly |

\hline 8. \& | (i) |
| :--- |
| (ii) $\left(\begin{array}{ll}1 & 0 \\ 1 & 1\end{array}\right)$ |
| (iii) Either $\left(\begin{array}{ll} 1 & 2 \\ 0 & 1 \end{array}\right)$ |
| Or | \& B1

B1
B1
B1 B1
B1
M1
A1ft
M1
A2ft
B1
B1
B1 \& 3
2

6

11 \& | Find coordinates $(0,0)(3,1)(2,1)$ $(5,2)$ found |
| :--- |
| Accurate diagram sketched |
| Each column correct |
| Correct inverse for their (ii) stated Post multiply \mathbf{C} by inverse of (ii) |
| Correct answer found |
| Set up 4 equations for elements from correct matrix multiplication All elements correct, -1 each error |
| Shear, |
| x axis invariant or parallel to x-axis eg image of $(1,1)$ is $(3,1)$ |
| SR allow s.f. 2 or shearing angle of correct angle to appropriate axis |

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|c|}
\hline 9. \& \begin{tabular}{l}
(i) \(\quad a\left|\begin{array}{ll}a \& 1 \\ 1 \& 2\end{array}\right|-\left|\begin{array}{ll}1 \& 1 \\ 1 \& 2\end{array}\right|+\left|\begin{array}{ll}1 \& a \\ 1 \& 1\end{array}\right|\) \(2 a^{2}-2 a\) \\
(ii) \\
\(a=0\) or 1 \\
(iii) (a) \\
(b)
\end{tabular} \& \begin{tabular}{l}
M1 \\
A1 \\
A1 \\
M1 \\
Alft \\
Alft \\
B1 B1 \\
B1 \\
B1
\end{tabular} \& 3

4

10 \& | Correct expansion process shown Obtain correct unsimplified expression |
| :--- |
| Obtain correct answer |
| Equate their det to 0 Obtain correct answers, ft solving a quadratic |
| Equations consistent, but non unique solutions |
| Correct equations seen \& inconsistent, no solutions |

\hline 10. \& | i) $u_{2}=7 \quad u_{3}=19$ |
| :--- |
| (ii) $u_{n}=2\left(3^{n-1}\right)+1$ |
| (iii) $\begin{aligned} & u_{n+1}=3\left(2\left(3^{n-1}\right)+1\right)-2 \\ & u_{n+1}=2\left(3^{n}\right)+1 \end{aligned}$ | \& M1

A1
A1
M1
A1
B1ft
M1
A1
A1
B1 \& 3
2

5

10 \& | Attempt to find next 2 terms Obtain correct answers Show given result correctly |
| :--- |
| Expression involving a power of 3 Obtain correct answer |
| Verify result true when $n=1$ or $n=2$ |
| Expression for u_{n+1} using recurrence relation |
| Correct unsimplified answer |
| Correct answer in correct form |
| Statement of induction conclusion |

\hline
\end{tabular}

