MWWW. My Marks June 20. Parks Cloud. Com

4725 Further Pure Mathematics 1

1.		B1		State compact value of S on S
1.				State correct value of S_{250} or S_{100}
	004200625 25502500 050000125	M1		Subtract $S_{250} - S_{100}$ (or S_{101} or S_{99})
	984390625 - 25502500 = 958888125	A1	3	Obtain correct exact answer
			3	
2.	3a+5b=1, a+2b=1	M1		Obtain a pair of simultaneous
		M1		equations
	a = -3, b = 2	A1 A1	4	Attempt to solve
			4	Obtain correct answers.
3.	(i) 11 – 29i	B1 B1	2	Correct real and imaginary parts
	(ii) $1 + 41i$	B1 B1	2	Correct real and imaginary parts
			4	
4.	Either $p+q=-1, pq=-8$	B1		Both values stated or used
	$\frac{p+q}{pq}$	B1		Correct expression seen
		M1		Use their values in their evenession
	7		1	Use their values in their expression Obtain correct answer
	$-\frac{7}{8}$	A1	4 4	Obtain correct answer
		B1	4	~ 1 .
	Or $\frac{1}{p} + \frac{1}{q} = 8$	DI		Substitute $x = \frac{1}{u}$ and use new
	p q			quadratic
	p + q = 1	B1		Correct value stated
	7	M1		Use their values in given expression
	$-\frac{7}{8}$	Al		Obtain correct answer
		AI		Obtain confect answer
	$-1+\sqrt{33}$	M1		Find roots of given quadratic
	Or $\frac{-1\pm\sqrt{33}}{2}$	1011		equation
		A1		Correct values seen
	7	M1		
	$-\frac{7}{8}$	A1		Use their values in given expression Obtain correct answer
5.		M1		Use given substitution and rearrange
5.	(i) $u^3 = \{(-)(5u+7)\}^2$			
		A1		Obtain correct expression, or
				equivalent
	$u^3 - 25u^2 - 70u - 49 = 0$	A1	3	Obtain correct final answer
	(ii)	M1		Use coefficient of <i>u</i> of their cubic or
				identity connecting the symmetric
				functions and substitute values from
				given equation
	-70	A1 ft	2	Obtain correct answer
			5	

			m	
				N. M. M. Mar
			1	State correct answers
6.	(i) $3\sqrt{2}, -\frac{\pi}{4}$ or -45° AEF	B1 B1	2	State correct answers
	(ii)(a)	B1B1 B1 ft	3	Circle, centre $(3, -3)$, through <i>O</i> ft for $(\pm 3, \pm 3)$ only
	(ii)(b)	B1 B1 B1	3	Straight line with +ve slope, through (3, -3) or their centre Half line only starting at centre
	(iii)	B1ft B1ft B1ft	3	Area above horizontal through <i>a</i> , below (ii) (b) Outside circle
7.	(i)	M1 A1	2	Show that terms cancel in pairs Obtain given answer correctly
	(ii)	M1 A1	2	Attempt to expand and simplify Obtain given answer correctly
	(iii)	B1 B1		Correct $\sum r$ stated $\sum 1 = n$
		M1*		Consider sum of 4 separate terms on RHS
	$(-1)^4 + (-1)^{(n+1)}(2n+1) - 2n(n+1) = 0$	*DM1 A1		Required sum is LHS – 3 terms Correct unsimplified expression
	$\binom{(n+1)^{n} - 1 - n(n+1)(2n+1) - 2n(n+1) - n}{n}$			Correct unsimplified expression
	$(n+1)^{4} - 1 - n(n+1)(2n+1) - 2n(n+1) - n$ $4\sum_{r=1}^{n} r^{3} = n^{2} (n+1)^{2}$	A1	6 10	Obtain given answer correctly
8.	(i)	B1 B1		Find coordinates (0, 0) (3, 1) (2, 1) (5, 2) found
		B1 B1	3	Accurate diagram sketched
	$\left \begin{array}{c} \text{(ii)} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \right $	B1 B1	2	Each column correct
	$ \begin{array}{c} (iii) & Either \\ (1 & 2) \end{array} $	B1 M1		Correct inverse for their (ii) stated Post multiply C by inverse of (ii)
	$\begin{pmatrix} 0 & 1 \end{pmatrix}$	Alft		Correct answer found
	Or	M1		Set up 4 equations for elements from correct matrix multiplication
		A2ft		All elements correct, -1 each error
		B1 B1		Shear, x axis invariant or parallel to x-axis
		B1	6 11	eg image of (1, 1) is (3, 1) SR allow s.f. 2 or shearing angle of correct angle to appropriate axis

				WWW. MYMARK	
9.	(i) $a\begin{vmatrix} a & 1 \\ 1 & 2 \end{vmatrix} - \begin{vmatrix} 1 & 1 \\ 1 & 2 \end{vmatrix} + \begin{vmatrix} 1 & a \\ 1 & 1 \end{vmatrix}$ $2a^2 - 2a$	M1 A1 A1	3	Www.mymathsc Correct expansion process shown Obtain correct unsimplified expression Obtain correct answer	Youd.com
	(ii) $a = 0 \text{ or } 1$	M1 A1ft A1ft	3	Equate their det to 0 Obtain correct answers, ft solving a quadratic	
	(iii) (a)	B1 B1		Equations consistent, but non unique solutions	
	(b)	B1 B1	4 10	Correct equations seen & inconsistent, no solutions	
10.	i) $u_2 = 7 \ u_3 = 19$	M1 A1 A1	3	Attempt to find next 2 terms Obtain correct answers Show given result correctly	
	(ii) $u_n = 2(3^{n-1}) + 1$	M1 A1	2	Expression involving a power of 3 Obtain correct answer	
	(iii) $u_{n+1} = 3(2(3^{n-1})+1) - 2$	B1ft M1		Verify result true when $n = 1$ or $n = 2$ Expression for u_{n+1} using recurrence relation	
	$u_{n+1} = 2(3^n) + 1$	A1 A1 B1	~	Correct unsimplified answer Correct answer in correct form Statement of induction conclusion	
			5 10		